Saturday 20 May 2017

What is Flux

In metallurgy, a flux  is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.
Some of the earliest known fluxes were carbonate of soda, potash, charcoal, coke, borax,lime,lead sulphide and certain minerals containing phosphorus. Iron ore was also used as a flux in the smelting of copper. These agents served various functions, the simplest being a reducing agent which prevented oxides from forming on the surface of the molten metal, while others absorbed impurities into the slag which could be scraped off the molten metal. As cleaning agents, fluxes facilitate soldering, brazing, and welding by removing oxidation from the metals to be joined. Common fluxes are: ammonium chloride or rosin for soldering tin; hydrochloric acid and zinc chloride for soldering galvanized iron (and other zinc surfaces); and borax for brazing, braze-welding ferrous metals, and forge welding.
In the process of smelting, inorganic chlorides, fluorides (see fluorite), limestone and other materials are designated as "fluxes" when added to the contents of a smelting furnace or a cupola for the purpose of purging the metal of chemical impurities such as phosphorus, and of rendering slag more liquid at the smelting temperature. The slag is a liquid mixture of ash, flux, and other impurities. This reduction of slag viscosity with temperature, increasing the flow of slag in smelting, is the original origin of the word flux in metallurgy. Fluxes are also used in foundries for removing impurities from molten nonferrous metals such as aluminium, or for adding desirable trace elements such as titanium.
In high-temperature metal joining processes (welding, brazing and soldering), the primary purpose of flux is to prevent oxidation of the base and filler materials. Tin-lead solder (e.g.) attaches very well to copper, but poorly to the various oxides of copper, which form quickly at soldering temperatures. Flux is a substance which is nearly inert at room temperature, but which becomes strongly reducing at elevated temperatures, preventing the formation of metal oxides. Additionally, flux allows solder to flow easily on the working piece rather than forming beads as it would otherwise.
The role of a flux in joining processes is typically dual: dissolving of the oxides on the metal surface, which facilitates wetting by molten metal, and acting as an oxygen barrier by coating the hot surface, preventing its oxidation. In some applications molten flux also serves as a heat transfer medium, facilitating heating of the joint by the soldering tool or molten solder.
Fluxes for soft soldering are typically of organic nature, though inorganic fluxes, usually based on halogenides and/or acids, are also used in non-electronics applications. Fluxes for brazing operate at significantly higher temperatures and are therefore mostly inorganic; the organic compounds tend to be of supplementary nature.

Rosin fluxes

 
The terms resin flux and rosin flux are ambiguous and somewhat interchangeable, with different vendors using different assignments. Generally, fluxes are labeled as rosin if the vehicle they are based on is primarily natural rosin. Some manufactures reserve "rosin" designation for military fluxes based on rosin (R, RMA and RA compositions) and label others as "resin".
Rosin has good flux properties. A mixture of organic acids (resin acids, predominantly abietic acid, with pimaric acid, isopimaric acid, neoabietic acid, dihydroabietic acid, and dehydroabietic acid), rosin is a glassy solid, virtually nonreactive and noncorrosive at normal temperature, but liquid, ionic and mildly reactive to metal oxides at molten state. Rosin tends to soften between 60-70 °C and is fully fluid at around 120 °C; molten rosin is weakly acidic and is able to dissolve thinner layers of surface oxides from copper without further additives. For heavier surface contamination or improved process speed, additional activators can be added.
There are three types of rosin: gum rosin (from pine tree oleoresin), wood rosin (obtained by extraction of tree stumps), and tall oil rosin (obtained from tall oil, a byproduct of kraft paper process). Gum rosin has a milder odor and lower tendency to crystallize from solutions than wood rosin, and is therefore preferred for flux applications. Tall oil rosin finds increased use due to its higher thermal stability and therefore lower tendency to form insoluble thermal decomposition residues. The composition and quality of rosin differs by the tree type, and also by location and even by year. In Europe, rosin for fluxes is usually obtained from a specific type of Portuguese pine, in America a North Carolina variant is used.
Natural rosin can be used as-is, or can be chemically modified by e.g. esterification, polymerization, or hydrogenation. The properties being altered are increased thermal stability, better cleanability, altered solution viscosity, and harder residue (or conversely, softer and more tacky residue). Rosin can be also converted to a water-soluble rosin flux, by formation of an ethoxylated rosin amine, an adduct with a polyglycol and an amine.
One of the early fluxes was a mixture of equal amounts of rosin and vaseline. A more aggressive early composition was a mixture of saturated solution of zinc chloride, alcohol, and glycerol.
Fluxes can be also prepared from synthetic resins, often based on esters of polyols and fatty acids. Such resins have improved fume odor and lower residue tack, but their fluxing activity and solubility tend to be lower than of natural resins.
Rosin fluxes are categorized by grades of activity: L for low, M for moderate, and H for high. There are also other abbreviations for different rosin flux grades:
  • R (Rosin) - pure rosin, no activators, low activity, mildest
  • WW (Water-White) - purest rosin grade, no activators, low activity, sometimes synonymous with R
  • RMA (Rosin Mildly Activated) - contains mild activators, typically no halides
  • RA (Rosin Activated) - rosin with strong activators, high activity, contains halides
  • OA (Organic Acid) - rosin activated with organic acids, high activity, highly corrosive, aqueous cleaning
  • SA (Synthetically Activated) - rosin with strong synthetic activators, high activity; formulated to be easily soluble in organic solvents (chlorofluorocarbons, alcohols) to facilitate cleaning
  • WS (Water-Soluble) - usually based on inorganic or organic halides; highly corrosive residues
  • SRA (Superactivated rosin) - rosin with very strong activators, very high activity
  • IA (Inorganic Acid) - rosin activated with inorganic acids (usually hydrochloric acid or phosphoric acid), highest activities, highly corrosive
R, WW, and RMA grades are used for joints that can not be easily cleaned or where there is too high corrosion risk. More active grades require thorough cleaning of the residues. Improper cleaning can actually aggravate the corrosion by releasing trapped activators from the flux residues.
There are several possible activator groups for rosins:
  • halide activators (organic halide salts, e.g. dimethylammonium chloride and diethylammonium chloride)
  • organic acids (monocarboxylic, e.g. formic acid, acetic acid, propionic acid, and dicarboxylic, e.g. oxalic acid, malonic acid, sebacic acid)

Uses

In soldering of metals, flux serves a threefold purpose: it removes any oxidized metal from the surfaces to be soldered, seals out air thus preventing further oxidation, and by facilitating amalgamation improves wetting characteristics of the liquid solder. Some fluxes are corrosive, so the parts have to be cleaned with a damp sponge or other absorbent material after soldering to prevent damage. Several types of flux are used in electronics.
A number of standards exist to define the various flux types. The principal standard is J-STD-004.
J-STD-004 characterizes the flux by type (e.g. Rosin (RO), Resin (RE), Organic (OR), Inorganic (IN)), its activity (strength of fluxing) and reliability of residue from a surface insulation resistance (SIR) and electromigration standpoint, and whether or not it contains halide activators.
This replaces the old MIL QQS standard which defined fluxes as:
R(Rosin)
RMA(Rosin mildly activated)
RA(Rosin activated)
WS(Water-soluble)
Any of these categories (except WS) may be no-clean, or not, depending on the chemistry selected and the standard that the manufacturer requires.
J-STD-004 includes tests for electromigration and surface insulation resistance (which must be greater than 100 MΩ after 168 hours at elevated temperature and humidity with a DC bias applied)

1 comment:

  1. This blog was a good read, very informative. I would like to add that flux are highly useful when it comes to soldering’s, these include liquid soldering flux for electronics, wave solder flux, rosin soldering flux paste and more. It is always important to use good quality solder flux.

    ReplyDelete

dobby repairs

Hi everyone I know that I haven't posted on here for quite some time  I probably won't be posting on here again for a while but I wa...

Total Pageviews