Monday, 15 May 2017

555 timer IC

The 555 timer IC is an integrated circuit (chip) used in a variety of timer, pulse generation, and oscillator applications. The 555 can be used to provide time delays, as an oscillator, and as a flip-flop element. Derivatives provide two or four timing circuits in one package.
Introduced in 1972 by Signetics,the 555 is still in widespread use due to its low price, ease of use, and stability. It is now made by many companies in the original bipolar and in low-power CMOS. As of 2003, it was estimated that 1 billion units were manufactured every year. The 555 is the most popular integrated circuit ever manufactured.

History

Die of the first 555 chip (1971)
The IC was designed in 1971 by Hans R. Camenzind under contract to Signetics (later acquired by Philips Semiconductors, and now NXP).
In 1962, Camenzind joined PR Mallory's Laboratory for Physical Science in Burlington, Massachusetts. He designed a pulse-width modulation (PWM) amplifier for audio applications,but it was not successful in the market because there was no power transistor included. He became interested in tuners such as a gyrator and a phase-locked loop (PLL). He was hired by Signetics to develop a PLL IC in 1968. He designed an oscillator for PLLs such that the frequency did not depend on the power supply voltage or temperature. However, Signetics laid off half of its employees, and the development was frozen due to a recession.
Camenzind proposed the development of a universal circuit based on the oscillator for PLLs, and asked that he would develop it alone, borrowing their equipment instead of having his pay cut in half. Other engineers argued the product could be built from existing parts, but the marketing manager bought the idea. Among 5xx numbers that were assigned for analogue ICs, the special number "555" was chosen.
Camenzind also taught circuit design at his nearby university in the morning, and went to the Northeastern University to get the master's degree at night. The first design was reviewed in the summer of 1971. There was no problem, so it had gone to the layout design. A few days later, he got the idea of using a direct resistance instead of a constant current source, and found that it worked. The change decreased the required 9 pins to 8, so the IC could be fit in an 8-pin package instead of a 14-pin package. This design passed the second design review, and the prototype was completed in October 1971. Its 9-pin copy had been already released by another company founded by an engineer who attended the first review and retired from Signetics, but they withdrew it soon after the 555 was released. The 555 timer was manufactured by 12 companies in 1972 and it became the best selling product.

Design

Depending on the manufacturer, the standard 555 package includes 25 transistors, 2 diodes and 15 resistors on a silicon chip installed in an 8-pin mini dual-in-line package (DIP-8). Variants available include the 556 (a 14-pin DIP combining two 555s on one chip), and the two 558 & 559s (both a 16-pin DIP combining four slightly modified 555s with DIS & THR connected internally, and TR is falling edge sensitive instead of level sensitive).
The NE555 parts were commercial temperature range, 0 °C to +70 °C, and the SE555 part number designated the military temperature range, −55 °C to +125 °C. These were available in both high-reliability metal can (T package) and inexpensive epoxy plastic (V package) packages. Thus the full part numbers were NE555V, NE555T, SE555V, and SE555T. It has been hypothesized that the 555 got its name from the three 5 kΩ resistors used within,but Hans Camenzind has stated that the number was arbitrary.Low-power versions of the 555 are also available, such as the 7555 and CMOS TLC555.The 7555 is designed to cause less supply noise than the classic 555 and the manufacturer claims that it usually does not require a "control" capacitor and in many cases does not require a decoupling capacitor on the power supply. Those parts should generally be included, however, because noise produced by the timer or variation in power supply voltage might interfere with other parts of a circuit or influence its threshold voltages.

Pins


PinNamePurpose
1GNDGround reference voltage, low level (0 V)
2TRIGThe OUT pin goes high and a timing interval starts when this input falls below 1/2 of CTRL voltage (which is typically 1/3 VCC, CTRL being 2/3 VCC by default if CTRL is left open). More simply we can say that OUT will be high as long as the trigger is kept at low voltage. Output of the timer totally depends upon the amplitude of the external trigger voltage applied to this pin.
3OUTThis output is driven to approximately 1.7 V below +VCC, or to GND.
4RESETA timing interval may be reset by driving this input to GND, but the timing does not begin again until RESET rises above approximately 0.7 volts. Overrides TRIG which overrides THR.
5CTRLProvides "control" access to the internal voltage divider (by default, 2/3 VCC).
6THRThe timing (OUT high) interval ends when the voltage at THR ("threshold") is greater than that at CTRL (2/3 VCC if CTRL is open).
7DISOpen collector output which may discharge a capacitor between intervals. In phase with output.
8VCCPositive supply voltage, which is usually between 3 and 15 V depending on the variation.
Pin 5 is also sometimes called the CONTROL VOLTAGE pin. By applying a voltage to the CONTROL VOLTAGE input one can alter the timing characteristics of the device. In most applications, the CONTROL VOLTAGE input is not used. It is usual to connect a 10 nF capacitor between pin 5 and 0 V to prevent interference. The CONTROL VOLTAGE input can be used to build an astable multivibrator with a frequency-modulated output.

look for 555circuits in future Circuit Mondays


No comments:

Post a Comment

dobby repairs

Hi everyone I know that I haven't posted on here for quite some time  I probably won't be posting on here again for a while but I wa...

Total Pageviews