Monday, 8 May 2017

Alternating current AC

Alternating current (AC), is an electric current which periodically reverses direction, whereas direct current (DC) flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electric energy that consumers typically use when they plug kitchen appliances, televisions and electric lamps into a wall socket. A common source of DC power is a battery cell in a flashlight. The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage
The usual waveform of alternating current in most electric power circuits is a sine wave. In certain applications, different waveforms are used, such as triangular or square waves. Audio and radio signals carried on electrical wires are also examples of alternating current. These types of alternating current carry information encoded (or modulated) onto the AC signal, such as sound (audio) or images (video). These currents typically alternate at higher frequencies than those used in power transmission.

History

The first alternator to produce alternating current was a dynamo electric generator based on Michael Faraday's principles constructed by the French instrument maker Hippolyte Pixii in 1832.Pixii later added a commutator to his device to produce the (then) more commonly used direct current. The earliest recorded practical application of alternating current is by Guillaume Duchenne, inventor and developer of electrotherapy. In 1855, he announced that AC was superior to direct current for electrotherapeutic triggering of muscle contractions.Alternating current technology had first developed in Europe due to the work of Guillaume Duchenne (1850s), the Hungarian Ganz Works company (1870s), and in the 1880s: Sebastian Ziani de Ferranti, Lucien Gaulard, and Galileo Ferraris.
In 1876, Russian engineer Pavel Yablochkov invented a lighting system based on a set of induction coils where the primary windings were connected to a source of AC. The secondary windings could be connected to several 'electric candles' (arc lamps) of his own design.[ The coils Yablochkov employed functioned essentially as transformers.[ In 1878, the Ganz factory, Budapest, Hungary, began manufacturing equipment for electric lighting and, by 1883, had installed over fifty systems in Austria-Hungary. Their AC systems used arc and incandescent lamps, generators, and other equipment. A power transformer developed by Lucien Gaulard and John Dixon Gibbs was demonstrated in London in 1881, and attracted the interest of Westinghouse. They also exhibited the invention in Turin in 1884.

AC power supply frequencies

The frequency of the electrical system varies by country and sometimes within a country; most electric power is generated at either 50 or 60 hertz. Some countries have a mixture of 50 Hz and 60 Hz supplies, notably electricity power transmission in Japan. A low frequency eases the design of electric motors, particularly for hoisting, crushing and rolling applications, and commutator-type traction motors for applications such as railways. However, low frequency also causes noticeable flicker in arc lamps and incandescent light bulbs. The use of lower frequencies also provided the advantage of lower impedance losses, which are proportional to frequency. The original Niagara Falls generators were built to produce 25 Hz power, as a compromise between low frequency for traction and heavy induction motors, while still allowing incandescent lighting to operate (although with noticeable flicker). Most of the 25 Hz residential and commercial customers for Niagara Falls power were converted to 60 Hz by the late 1950s, although some25 Hz industrial customers still existed as of the start of the 21st century. 16.7 Hz power (formerly 16 2/3 Hz) is still used in some European rail systems, such as in Austria, Germany, Norway, Sweden and Switzerland. Off-shore, military, textile industry, marine, aircraft, and spacecraft applications sometimes use 400 Hz, for benefits of reduced weight of apparatus or higher motor speeds. Computer mainframe systems were often powered by 400 or 415 Hz for benefits of ripple reduction while using smaller internal AC to DC conversion units.In any case, the input to the M-G set is the local customary voltage and frequency, variously 200 (Japan), 208, 240 (North America), 380, 400 or 415 (Europe) volts, and variously 50 or 60 Hz.


No comments:

Post a Comment

dobby repairs

Hi everyone I know that I haven't posted on here for quite some time  I probably won't be posting on here again for a while but I wa...

Total Pageviews