Tuesday, 16 May 2017

Solder

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder must be melted in order to adhere to and connect the pieces together, so a suitable alloy for use as solder will have a lower melting point than the pieces it is intended to join. Whenever possible, the solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder that is intended for use in making electrical connections between electronic components also usually has favorable electrical characteristics.
Soft solder typically has a melting point range of 90 to 450 °C (190 to 840 °F; 360 to 720 K), and is commonly used in electronics, plumbing, and sheet metal work. Manual soldering uses a soldering iron or soldering gun. Alloys that melt between 180 and 190 °C (360 and 370 °F; 450 and 460 K) are the most commonly used. Soldering performed using alloys with a melting point above 450 °C (840 °F; 720 K) is called "hard soldering", "silver soldering", or brazing.
In specific proportions, some alloys can become eutectic — that is, their melting point is the same as their freezing point. Non-eutectic alloys have markedly different solidus and liquidus temperatures, and within that range they exist as a paste of solid particles in a melt of the lower-melting phase. In electrical work, if the joint is disturbed in the pasty state before it has solidified totally, a poor electrical connection may result; use of eutectic solder reduces this problem. The pasty state of a non-eutectic solder can be exploited in plumbing, as it allows molding of the solder during cooling, e.g. for ensuring watertight joint of pipes, resulting in a so-called "wiped joint".
For electrical and electronics work, solder wire is available in a range of thicknesses for hand-soldering, and with cores containing flux. It is also available as a paste or as a preformed foil shaped to match the workpiece, more suitable for mechanized mass-production. Alloys of lead and tin were commonly used in the past and are still available; they are particularly convenient for hand-soldering. Lead-free solders have been increasing in use due to regulatory requirements plus the health and environmental benefits of avoiding lead-based electronic components. They are almost exclusively used today in consumer electronics.Plumbers often use bars of solder, much thicker than the wire used for electrical applications. Jewelers often use solder in thin sheets, which they cut into snippets.

Lead-free solder


On July 1, 2006 the European Union Waste Electrical and Electronic Equipment Directive (WEEE) and Restriction of Hazardous Substances Directive (RoHS) came into effect prohibiting the inclusion of significant quantities of lead in most consumer electronics produced in the EU. In the US, manufacturers may receive tax benefits by reducing the use of lead-based solder. Lead-free solders in commercial use may contain tin, copper, silver, bismuth, indium, zinc, antimony, and traces of other metals. Most lead-free replacements for conventional 60/40 and 63/37 Sn-Pb solder have melting points from 5 to 20 °C higher,though there are also solders with much lower melting points.
It may be desirable to use minor modification of the solder pots (e.g. titanium liners or impellers) used in wave-soldering, to reduce maintenance cost due to increased tin-scavenging of high-tin solder.
Lead-free solder may be less desirable for critical applications, such as aerospace and medical projects, because its properties are less thoroughly known.
Tin-Silver-Copper (Sn-Ag-Cu, or "SAC") solders are used by two-thirds of Japanese manufacturers for reflow and wave soldering, and by about 75% of companies for hand soldering. The widespread use of this popular lead-free solder alloy family is based on the reduced melting point of the Sn-Ag-Cu ternary eutectic behavior (217 ˚C), which is below the 22/78 Sn-Ag (wt.%) eutectic of 221 °C and the 59/41 Sn-Cu eutectic of 227 °C (recently revised by P. Snugovsky to 53/47 Sn-Cu). The ternary eutectic behavior of Sn-Ag-Cu and its application for electronics assembly was discovered (and patented) by a team of researchers from Ames Laboratory, Iowa State University, and from Sandia National Laboratories-Albuquerque.
Much recent research has focused on selection of 4th element additions to Sn-Ag-Cu to provide compatibility for the reduced cooling rate of solder sphere reflow for assembly of ball grid arrays, e.g., 18/64/14/4 Tin-Silver-Copper-Zinc (Sn-Ag-Cu-Zn) (melting range of 217–220 ˚C) and 18/64/16/2 Tin-Silver-Copper-Manganese (Sn-Ag-Cu-Mn) (melting range of 211–215 ˚C).
Tin-based solders readily dissolve gold, forming brittle intermetallics; for Sn-Pb alloys the critical concentration of gold to embrittle the joint is about 4%. Indium-rich solders (usually indium-lead) are more suitable for soldering thicker gold layer as the dissolution rate of gold in indium is much slower. Tin-rich solders also readily dissolve silver; for soldering silver metallization or surfaces, alloys with addition of silvers are suitable; tin-free alloys are also a choice, though their wettability is poorer. If the soldering time is long enough to form the intermetallics, the tin surface of a joint soldered to gold is very dull.

Lead solder


Tin-lead (Sn-Pb) solders, also called soft solders, are commercially available with tin concentrations between 5% and 70% by weight. The greater the tin concentration, the greater the solder’s tensile and shear strengths. Historically, lead has been widely believed to mitigate the formation of tin whiskers, though the precise mechanism for this is unknown.Today, many techniques are used to mitigate the problem, including changes to the annealing process (heating and cooling), addition of elements like copper and nickel, and the inclusion of conformal coatings. Alloys commonly used for electrical soldering are 60/40 Sn-Pb, which melts at 188 °C (370 °F),and 63/37 Sn-Pb used principally in electrical/electronic work. 63/37 is a eutectic alloy of these metals, which:
  1. has the lowest melting point (183 °C or 361 °F) of all the tin-lead alloys; and
  2. the melting point is truly a point — not a range.
In plumbing applications today, lead is prohibited. Historically, a higher proportion of lead was used, commonly 50/50. This had the advantage of making the alloy solidify more slowly. With the pipes being physically fitted together before soldering, the solder could be wiped over the joint to ensure water tightness. Although lead water pipes were displaced by copper when the significance of lead poisoning began to be fully appreciated, lead solder was still used until the 1980s because it was thought that the amount of lead that could leach into water from the solder was negligible from a properly soldered joint. The electrochemical couple of copper and lead promotes corrosion of the lead and tin. Tin, however, is protected by insoluble oxide. Since even small amounts of lead have been found detrimental to health, lead in plumbing solder was replaced by silver (food-grade applications) or antimony, with copper often added, and the proportion of tin was increased (see Lead-free solder.)
The addition of tin—more expensive than lead—improves wetting properties of the alloy; lead itself has poor wetting characteristics. High-tin tin-lead alloys have limited use as the workability range can be provided by a cheaper high-lead alloy.
In electronics, components on printed circuit boards (PCBs) are connected to the printed circuit, and hence to other components, by soldered joints. For miniaturized PCB joints with surface mount components, solder paste has largely replaced solid solder.
Lead-tin solders readily dissolve gold plating and form brittle intermetallics.60/40 Sn-Pb solder oxidizes on the surface, forming a complex 4-layer structure: tin(IV) oxide on the surface, below it a layer of tin(II) oxide with finely dispersed lead, followed by a layer of tin(II) oxide with finely dispersed tin and lead, and the solder alloy itself underneath.
Lead, and to some degree tin, as used in solder contains small but significant amounts of radioisotope impurities. Radioisotopes undergoing alpha decay are a concern due to their tendency to cause soft errors. Polonium-210 is especially problematic; lead-210 beta decays to bismuth-210 which then beta decays to polonium-210, an intense emitter of alpha particles. Uranium-238 and thorium-232 are other significant contaminants of alloys of lead.

Flux-core solder 

Flux is a reducing agent designed to help reduce (return oxidized metals to their metallic state) metal oxides at the points of contact to improve the electrical connection and mechanical strength. The two principal types of flux are acid flux (sometimes called "active flux"), used for metal mending and plumbing, and rosin flux (sometimes called "passive flux"), used in electronics, where the corrosiveness of the vapors released when acid flux is heated would risk damaging delicate circuitry.
Due to concerns over atmospheric pollution and hazardous waste disposal, the electronics industry has been gradually shifting from rosin flux to water-soluble flux, which can be removed with deionized water and detergent, instead of hydrocarbon solvents.
In contrast to using traditional bars or coiled wires of all-metal solder and manually applying flux to the parts being joined, much hand soldering since the mid-20th century has used flux-core solder. This is manufactured as a coiled wire of solder, with one or more continuous bodies of non-acid flux embedded lengthwise inside it. As the solder melts onto the joint, it frees the flux and releases that on it as well.

No comments:

Post a Comment

dobby repairs

Hi everyone I know that I haven't posted on here for quite some time  I probably won't be posting on here again for a while but I wa...

Total Pageviews