Sunday, 4 June 2017

MOSFET

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET). It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals.
The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.
The main advantage of a MOSFET is that it requires almost no input current to control the load current, when compared with bipolar transistors. In an "enhancement mode" MOSFET, voltage applied to the gate terminal increases the conductivity of the device. In "depletion mode" transistors, voltage applied at the gate reduces the conductivity.
The "metal" in the name MOSFET is now often a misnomer because the gate material is often a layer of polysilicon (polycrystalline silicon). "Oxide" in the name can also be a misnomer, as different dielectric materials are used with the aim of obtaining strong channels with smaller applied voltages. A metal-insulator-semiconductor field-effect transistor or MISFET is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect-transistor.
The MOSFET is by far the most common transistor in digital circuits, as hundreds of thousands or millions of them may be included in a memory chip or microprocessor. Since MOSFETs can be made with either p-type or n-type semiconductors, complementary pairs of MOS transistors can be used to make switching circuits with very low power consumption, in the form of CMOS logic

History

The basic principle of this kind of transistor was first patented by Julius Edgar Lilienfeld in 1925. Twenty five years later, when Bell Telephone attempted to patent the junction transistor, they found Lilienfeld already holding a patent, worded in a way that would include all types of transistors. Bell Labs was able to work out an agreement with Lilienfeld, who was still alive at that time (it is not known if they paid him money or not). It was at that time the Bell Labs version was given the name bipolar junction transistor, or simply junction transistor, and Lilienfeld's design took the name field effect transistor.
In 1959, Dawon Kahng and Martin M. (John) Atalla at Bell Labs invented the metal–oxide–semiconductor field-effect transistor (MOSFET) as an offshoot to the patented FET design. Operationally and structurally different from the bipolar junction transistor, the MOSFET was made by putting an insulating layer on the surface of the semiconductor and then placing a metallic gate electrode on that. It used crystalline silicon for the semiconductor and a thermally oxidized layer of silicon dioxide for the insulator. The silicon MOSFET did not generate localized electron traps at the interface between the silicon and its native oxide layer, and thus was inherently free from the trapping and scattering of carriers that had impeded the performance of earlier field-effect transistors.

Composition


Usually the semiconductor of choice is silicon, but some chip manufacturers, most notably IBM and Intel, recently started using a chemical compound of silicon and germanium (SiGe) in MOSFET channels. Unfortunately, many semiconductors with better electrical properties than silicon, such as gallium arsenide, do not form good semiconductor-to-insulator interfaces, and thus are not suitable for MOSFETs. Research continues on creating insulators with acceptable electrical characteristics on other semiconductor materials.
To overcome the increase in power consumption due to gate current leakage, a high-κ dielectric is used instead of silicon dioxide for the gate insulator, while polysilicon is replaced by metal gates (see Intel announcement).
The gate is separated from the channel by a thin insulating layer, traditionally of silicon dioxide and later of silicon oxynitride. Some companies have started to introduce a high-κ dielectric and metal gate combination in the 45 nanometer node.
When a voltage is applied between the gate and body terminals, the electric field generated penetrates through the oxide and creates an "inversion layer" or "channel" at the semiconductor-insulator interface. The inversion layer provides a channel through which current can pass between source and drain terminals. Varying the voltage between the gate and body modulates the conductivity of this layer and thereby controls the current flow between drain and source. This is known as enhancement mode.

Operation


Metal–oxide–semiconductor structure

The traditional metal–oxide–semiconductor (MOS) structure is obtained by growing a layer of silicon dioxide (SiO2) on top of a silicon substrate and depositing a layer of metal or polycrystalline silicon (the latter is commonly used). As the silicon dioxide is a dielectric material, its structure is equivalent to a planar capacitor, with one of the electrodes replaced by a semiconductor.
When a voltage is applied across a MOS structure, it modifies the distribution of charges in the semiconductor. If we consider a p-type semiconductor (with the density of acceptors, p the density of holes; p = NA in neutral bulk), a positive voltage, , from gate to body (see figure) creates a depletion layer by forcing the positively charged holes away from the gate-insulator/semiconductor interface, leaving exposed a carrier-free region of immobile, negatively charged acceptor ions (see doping (semiconductor)). If is high enough, a high concentration of negative charge carriers forms in an inversion layer located in a thin layer next to the interface between the semiconductor and the insulator. Conventionally, the gate voltage at which the volume density of electrons in the inversion layer is the same as the volume density of holes in the body is called the threshold voltage. When the voltage between transistor gate and source (VGS) exceeds the threshold voltage (Vth), it is known as overdrive voltage.
This structure with p-type body is the basis of the n-type MOSFET, which requires the addition of n-type source and drain regions

Applications

Digital integrated circuits such as microprocessors and memory devices contain thousands to millions of integrated MOSFET transistors on each device, providing the basic switching functions required to implement logic gates and data storage. Discrete devices are widely used in applications such as switch mode power supplies, variable-frequency drives and other power electronics applications where each device may be switching hundreds or thousands of watts. Radio-frequency amplifiers up to the UHF spectrum use MOSFET transistors as analog signal and power amplifiers. Radio systems also use MOSFETs as oscillators, or mixers to convert frequencies. MOSFET devices are also applied in audio-frequency power amplifiers for public address systems, sound reinforcement and home and automobile sound systems

MOS integrated circuits

Following the development of clean rooms to reduce contamination to levels never before thought necessary, and of photolithography and the planar process to allow circuits to be made in very few steps, the Si–SiO2 system possessed the technical attractions of low cost of production (on a per circuit basis) and ease of integration. Largely because of these two factors, the MOSFET has become the most widely used type of transistor in integrated circuits.
General Microelectronics introduced the first commercial MOS integrated circuit in 1964.
Additionally, the method of coupling two complementary MOSFETS (P-channel and N-channel) into one high/low switch, known as CMOS, means that digital circuits dissipate very little power except when actually switched.
The earliest microprocessors starting in 1970 were all "MOS microprocessors"—i.e., fabricated entirely from PMOS logic or fabricated entirely from NMOS logic. In the 1970s, "MOS microprocessors" were often contrasted with "CMOS microprocessors" and "bipolar bit-slice processors".

CMOS circuits

The MOSFET is used in digital complementary metal–oxide–semiconductor (CMOS) logic, which uses p- and n-channel MOSFETs as building blocks. Overheating is a major concern in integrated circuits since ever more transistors are packed into ever smaller chips. CMOS logic reduces power consumption because no current flows (ideally), and thus no power is consumed, except when the inputs to logic gates are being switched. CMOS accomplishes this current reduction by complementing every nMOSFET with a pMOSFET and connecting both gates and both drains together. A high voltage on the gates will cause the nMOSFET to conduct and the pMOSFET not to conduct and a low voltage on the gates causes the reverse. During the switching time as the voltage goes from one state to another, both MOSFETs will conduct briefly. This arrangement greatly reduces power consumption and heat generation.

Digital

The growth of digital technologies like the microprocessor has provided the motivation to advance MOSFET technology faster than any other type of silicon-based transistor. A big advantage of MOSFETs for digital switching is that the oxide layer between the gate and the channel prevents DC current from flowing through the gate, further reducing power consumption and giving a very large input impedance. The insulating oxide between the gate and channel effectively isolates a MOSFET in one logic stage from earlier and later stages, which allows a single MOSFET output to drive a considerable number of MOSFET inputs. Bipolar transistor-based logic (such as TTL) does not have such a high fanout capacity. This isolation also makes it easier for the designers to ignore to some extent loading effects between logic stages independently. That extent is defined by the operating frequency: as frequencies increase, the input impedance of the MOSFETs decreases.

Analog

The MOSFET's advantages in digital circuits do not translate into supremacy in all analog circuits. The two types of circuit draw upon different features of transistor behavior. Digital circuits switch, spending most of their time outside the switching region, while analog circuits depend on the linearity of response when the MOSFET is held precisely in the switching region. The bipolar junction transistor (BJT) has traditionally been the analog designer's transistor of choice, due largely to its higher transconductance and its lower output impedance (drain-voltage independence) in the switching region.
Nevertheless, MOSFETs are widely used in many types of analog circuits because of certain advantages. The characteristics and performance of many analog circuits can be scaled up or down by changing the sizes (length and width) of the MOSFETs used. By comparison, in most bipolar transistors the size of the device does not significantly affect its performance. MOSFETs' ideal characteristics regarding gate current (zero) and drain-source offset voltage (zero) also make them nearly ideal switch elements, and also make switched capacitor analog circuits practical. In their linear region, MOSFETs can be used as precision resistors, which can have a much higher controlled resistance than BJTs. In high power circuits, MOSFETs sometimes have the advantage of not suffering from thermal runaway as Bjt . Also, MOSFETs can be configured to perform as capacitors and gyrator circuits which allow op-amps made from them to appear as inductors, thereby allowing all of the normal analog devices on a chip (except for diodes, which can be made smaller than a MOSFET anyway) to be built entirely out of MOSFETs. This means that complete analog circuits can be made on a silicon chip in a much smaller space and with simpler fabrication techniques. MOSFETS are ideally suited to switch inductive loads because of tolerance to inductive kickback.
Some ICs combine analog and digital MOSFET circuitry on a single mixed-signal integrated circuit, making the needed board space even smaller. This creates a need to isolate the analog circuits from the digital circuits on a chip level, leading to the use of isolation rings and Silicon-On-Insulator (SOI). Since MOSFETs require more space to handle a given amount of power than a BJT, fabrication processes can incorporate BJTs and MOSFETs into a single device. Mixed-transistor devices are called Bi-FETs (bipolar FETs) if they contain just one BJT-FET and BiCMOS (bipolar-CMOS) if they contain complementary BJT-FETs. Such devices have the advantages of both insulated gates and higher current density.

No comments:

Post a Comment

dobby repairs

Hi everyone I know that I haven't posted on here for quite some time  I probably won't be posting on here again for a while but I wa...

Total Pageviews