Good afternoon folks welcome to another Training Tuesday this week we will cover Breadboarding basics
Tools or items needed
a breadboard and some component's
The purpose of the breadboard is to make quick electrical connections between components- like resistors, LEDs, capacitors, etc- so that you can test your circuit before permanently soldering it together. Breadboards have many small sockets on them, and some groups of sockets are electrically connected to each other. On the underside of the board there are many small metal strips which physically connect certain groups of sockets together and allow electricity to flow freely between them. These strips are probably not visible on the underside of your breadboard, but the third picture shows how they are organized.
Breadboards are usually divided into four sections, two outer sections and two inner sections. Each row of five sockets in the inner sections are electrically connected to each other . The two outer sections of the breadboard are usually used exclusively for power. On many breadboards these sockets will be labeled with colors denoting positive voltage (usually red) and ground (black or blue). It is important to note that on many breadboards the power lines only run half the length of the board . You will need to run a wire between these two sections to send power to from one end to the other. There is nothing special about the outer sections of the breadboard that makes particularly suitable for power other than that they run most of the length of the board, but if you choose to use these rows for other things you may confuse others or even yourself, so it is good practice to use these for power only.
The first thing to do is send power to the breadboard. Breadboards do not have their own power supply. Some breadboards come with a power supply attached, but it is usually not connected directly to the power lines on the breadboard.
Power supplies come in many shapes and sizes, you may have to dial in the voltage or your power supply may only let you chose from one or a few types voltage levels. For this tutorial (and for many of your future projects) we will be using 5V DC power. This means that you will make two connections to your power supply, +5 and ground.
Alternative power supplies:
-use the +5 volt and GND (ground) pins of an arduino (you must plug the arduino into a computer or wall socket via usb first)
-battery- will require an attachment to connect to your breadboard
Now the breadboard is powered. Convince yourself by using a multimeter to measure the voltage of any of the sockets in the power lines of the board.
Breadboards are usually divided into four sections, two outer sections and two inner sections. Each row of five sockets in the inner sections are electrically connected to each other . The two outer sections of the breadboard are usually used exclusively for power. On many breadboards these sockets will be labeled with colors denoting positive voltage (usually red) and ground (black or blue). It is important to note that on many breadboards the power lines only run half the length of the board . You will need to run a wire between these two sections to send power to from one end to the other. There is nothing special about the outer sections of the breadboard that makes particularly suitable for power other than that they run most of the length of the board, but if you choose to use these rows for other things you may confuse others or even yourself, so it is good practice to use these for power only.
The first thing to do is send power to the breadboard. Breadboards do not have their own power supply. Some breadboards come with a power supply attached, but it is usually not connected directly to the power lines on the breadboard.
Power supplies come in many shapes and sizes, you may have to dial in the voltage or your power supply may only let you chose from one or a few types voltage levels. For this tutorial (and for many of your future projects) we will be using 5V DC power. This means that you will make two connections to your power supply, +5 and ground.
Alternative power supplies:
-use the +5 volt and GND (ground) pins of an arduino (you must plug the arduino into a computer or wall socket via usb first)
-battery- will require an attachment to connect to your breadboard
Now the breadboard is powered. Convince yourself by using a multimeter to measure the voltage of any of the sockets in the power lines of the board.
What have we learned
we have covered the very basics of breadboarding
No comments:
Post a Comment