Induction chargers use an induction coil to create an alternating electromagnetic field from within a charging base, and a second induction coil in the portable device takes power from the electromagnetic field and converts it back into electric current to charge the battery. The two induction coils in proximity combine to form an electrical transformer. Greater distances between sender and receiver coils can be achieved when the inductive charging system uses resonant inductive coupling.
Recent improvements to this resonant system include using a movable transmission coil (i.e. mounted on an elevating platform or arm) and the use of other materials for the receiver coil made of silver plated copper or sometimes aluminium to minimize weight and decrease resistance due to the skin effect.
Advantages
Protected connections – No corrosion when the electronics are all enclosed, away from water or oxygen in the atmosphere. Less risk of electrical faults such as short circuit due to insulation failure, especially where connections are made or broken frequently.Low infection risk – For embedded medical devices, transmission of power via a magnetic field passing through the skin avoids the infection risks associated with wires penetrating the skin.
Durability – Without the need to constantly plug and unplug the device, there is significantly less wear and tear on the socket of the device and the attaching cable.
Increased convenience and aesthetic quality – No need for cables.
Automated high power inductive charging of electric vehicles allows for more frequent charging events and consequential driving range extension.
Inductive charging systems can be operated automatically without dependence on people to plug and unplug. This results in higher reliability.
Autonomous driving technology, when applied to electric vehicles, depends on autonomous electric charging—automatic operation of inductive charging solves this problem.
Inductive charging of electric vehicles at high power levels enables charging of electric vehicles while in motion (also known as dynamic charging).
Disadvantages
The following disadvantages have been noted for low power (i.e., less than 100 watts) inductive charging devices. These disadvantages may not be applicable to high power (i.e. greater than 5 kilowatts) electric vehicle inductive charging systems.- Slower charging – Due to the lower efficiency, devices take longer to charge when supplied power is the same amount.
- More expensive – Inductive charging also requires drive electronics and coils in both device and charger, increasing the complexity and cost of manufacturing.
- Inconvenience - When a mobile device is connected to a cable, it can be moved around (albeit in a limited range) and operated while charging. In most implementations of inductive charging, the mobile device must be left on a pad to charge, and thus can't be moved around or easily operated while charging.
For example, the Magne Charge vehicle recharger system employs high-frequency induction to deliver high power at an efficiency of 86% (6.6 kW power delivery from a 7.68 kW power draw).
Standards
- Magne Charge, a largely obsolete inductive charging system, also known as J1773, used to charge battery electric vehicles (BEV) formerly made by General Motors.
- Qi, an interface standard developed by the Wireless Power Consortium for inductive electrical power transfer. At the time of July 2017, it is the most famous standard in the world, more than 200 million devices supporting this interface.
AirFuel Alliance:
In January 2012, the IEEE announced the initiation of the Power Matters Alliance (PMA) under the IEEE Standards Association (IEEE-SA) Industry Connections. The alliance is formed to publish set of standards for inductive power that are safe and energy efficient, and have smart power management. The PMA will also focus on the creation of an inductive power ecosystemRezence was an interface standard developed by the Alliance for Wireless Power (A4WP).
A4WP and PMA merged into the AirFuel Alliance in 2015.
No comments:
Post a Comment